

CS103
FALL 2025

Lecture 17: Regular Expressions

First, Some Announcements!

Second Midterm Logistics

- Our second midterm is next **Monday, November 10th,** from **7-10 PM**. Locations vary, but mostly Hewlett 200.
- Topic coverage is primarily lectures 06 - 13 (functions through induction) and PS3 - PS5. Finite automata and onward won't be tested here.
 - Because the material is cumulative, topics from PS1 - PS2 and Lectures 00 - 05 are also fair game.
- Seating assignments will be posted Wednesday evening.
- Kenneth will host an exam review session this Thursday, November 6th, 5-6 PM (room TBD; check Ed).

Preparing for the Exam

- The top skills that will serve you well on this exam:
 - ***Knowing how to set up a proof.*** This is a recurring theme across functions, sets, graphs, pigeonhole, and induction.
 - ***Distinguishing between assuming and proving.*** This similarly cuts across all of these topics.
 - ***Reading new definitions.*** This is at the heart of mathematical reasoning.
 - ***Writing proofs in line with definitions.*** Folks often ask about whether they're being rigorous enough. Often "rigorous enough" simply means "following what the definitions say."
- Our personal recommendation: when working through practice problems, pay super extra close attention to these areas.

Preparing for the Exam

- As with the first midterm exam, we've posted a bunch of practice exams on the course website.
 - There are ten practice exams (yes, really!). We realistically don't expect anyone to complete them all. They're there to give you a feeling of what the exam might look like.
- Some general notes on preparing:
 - Q5 and Q6 on PS6, while technically on topics that aren't covered on the midterm, are great practice for the sorts of reasoning you'll need on the exam.
 - ***Keep the TAs in the loop when studying.*** Ask for feedback on any proofs you write when getting ready for the exam.
 - Don't skip on biological care and maintenance. Exams can be stressful, but please make time for basic things like showering, eating, etc. and for self-care in whatever form that takes for you.
- ***You can do this.*** Best of luck on the exam!

On to CS103!

Recap from Last Time

Regular Languages

- A language L is called a ***regular language*** if there is a DFA or an NFA for L .
- ***Theorem:*** The following are equivalent:
 - L is a regular language.
 - There is a DFA D where $\mathcal{L}(D) = L$.
 - There is an NFA N where $\mathcal{L}(N) = L$.
- In other words, knowing any one of the above three facts means you know the other two.

Language Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, then wx is the **concatenation** of w and x .
- If L_1 and L_2 are languages over Σ , the **concatenation** of L_1 and L_2 is the language L_1L_2 defined as

$$L_1L_2 = \{ x \mid \exists w_1 \in L_1. \exists w_2 \in L_2. x = w_1w_2 \}$$

- Example: if $L_1 = \{ \text{a, ba, bb} \}$ and $L_2 = \{ \text{aa, bb} \}$, then

$$L_1L_2 = \{ \text{aaa, abb, baaa, babb, bbaa, bbbb} \}$$

Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa}, \text{b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L .

$$\{ \text{aaaa}, \text{aab}, \text{baa}, \text{bb} \}$$

- LLL is the set of strings formed by concatenating triples of strings in L .

$$\{ \text{aaaaaa}, \text{aaaab}, \text{aabaa}, \text{aabb}, \text{baaaa}, \text{baab}, \text{bbaa}, \text{bbb} \}$$

- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L .

$$\{ \text{aaaaaaaa}, \text{aaaaaab}, \text{aaaabaa}, \text{aaaabb}, \text{aabaaaa}, \text{aabaab}, \text{aabbaa}, \text{aabb}, \text{baaaaa}, \text{baaaab}, \text{baabaa}, \text{baabb}, \text{bbaaaa}, \text{bbaab}, \text{bbbaa}, \text{bbbb} \}$$

Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:

$$L^0 = \{\varepsilon\} \quad L^{n+1} = LL^n$$

- So, for example, $\{ \text{aa}, \text{b} \}^3$ is the language
$$\{ \text{aaaaaa}, \text{aaaab}, \text{aabaa}, \text{aabb}, \text{baaaa}, \text{baab}, \text{bbaa}, \text{bbb} \}$$

The Kleene Closure

- An important operation on languages is the **Kleene Closure**, which is defined as

$$L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \}$$

- Mathematically:

$$w \in L^* \quad \text{iff} \quad \exists n \in \mathbb{N}. w \in L^n$$

- Intuitively, all possible ways of concatenating zero or more strings in L together, possibly with repetition.

The Kleene Closure

If $L = \{ \text{ a, bb } \}$, then $L^* = \{$

$\varepsilon,$

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb,

...

}

Think of L^* as the set of strings you can make if you have a collection of rubber stamps - one for each string in L - and you form every possible string that can be made from those stamps.

Closure Properties

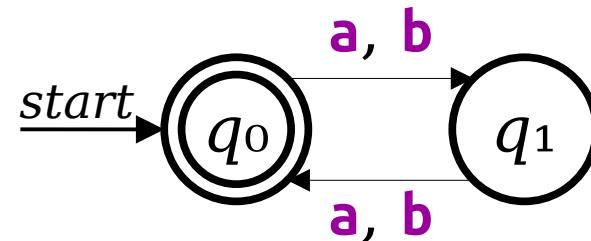
- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - $L_1 \cup L_2$
 - L_1L_2
 - L_1^*
- These (and other) properties are called ***closure properties of the regular languages.***

New Stuff!

Another View of Regular Languages

Devices for Articulating Regular Languages

- Finite Automata



- Set (or other Mathematical) Notation

{ $w \in \Sigma^*$ | w 's length is even }

- State Transition Table

	a	b
q_0	q_1	q_1
q_1	q_0	q_0

- **New!** Regular Expressions

Devices for Articulating Regular Languages

- Finite Automata

- Set (or other Mathematical) Notation

{ $w \in \Sigma^*$ | w 's length is even }

- State Transition
- *New!* Regular I

Note: This one is not unique to regular languages! We can express non-regular languages with set builder notation, as well. More on that another day, when we explore other families of languages.

Regular Expressions

- ***Regular expressions*** are a way of describing a language via a string representation.
- They're used just about everywhere:
 - They're built into the JavaScript language and used for data validation.
 - They're used in the UNIX grep and flex tools to search files and build compilers.
 - They're employed to clean and scrape data for large-scale analysis projects.
- Conceptually, regular expressions are strings describing how to assemble a larger language out of smaller pieces.

Rethinking Regular Languages

- We currently have several tools for showing a language L is regular:
 - Construct a DFA for L .
 - Construct an NFA for L .
 - Combine several simpler regular languages together via closure properties to form L .
- We have not spoken much of this last idea.

Constructing Regular Languages

- ***Idea:*** Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- *This is a bottom-up approach to the regular languages.*

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset .
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$.
- The symbol ϵ is a regular expression that represents the language $\{\epsilon\}$.
 - ***Remember:*** $\{\epsilon\} \neq \emptyset$!
 - ***Remember:*** $\{\epsilon\} \neq \epsilon$!

Compound Regular Expressions

- If R_1 and R_2 are regular expressions, $\mathbf{R_1R_2}$ is a regular expression for the *concatenation* of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $\mathbf{R_1 \cup R_2}$ is a regular expression for the *union* of the languages of R_1 and R_2 .
- If R is a regular expression, $\mathbf{R^*}$ is a regular expression for the *Kleene closure* of the language of R .
- If R is a regular expression, $\mathbf{(R)}$ is a regular expression with the same meaning as R .

Operator Precedence

- Here's the operator precedence for regular expressions:

$$(R)$$
$$R^*$$
$$R_1 R_2$$
$$R_1 \cup R_2$$

- So **ab*cUd** is parsed as **((a(b*))c)Ud**

Regular Expression Examples

- The regular expression **trickUtreat** represents the language
$$\{ \text{ trick, treat } \}.$$
- The regular expression **booo*** represents the regular language
$$\{ \text{ boo, booo, boooo, ... } \}.$$
- The regular expression **candy!(candy!)*** represents the regular language
$$\{ \text{ candy!, candy!candy!, candy!candy!candy!, ... } \}.$$

Regular Expressions, Formally

- The ***language of a regular expression*** is the language described by that regular expression.
- Formally:
 - $\mathcal{L}(\epsilon) = \{\epsilon\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathcal{L}(a) = \{a\}$
 - $\mathcal{L}(R_1 R_2) = \mathcal{L}(R_1) \mathcal{L}(R_2)$
 - $\mathcal{L}(R_1 \cup R_2) = \mathcal{L}(R_1) \cup \mathcal{L}(R_2)$
 - $\mathcal{L}(R^*) = \mathcal{L}(R)^*$
 - $\mathcal{L}((R)) = \mathcal{L}(R)$

Worthwhile activity: Apply this recursive definition to

a(b \cup c)((d))

and see what you get.

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

$$(\mathbf{a} \cup \mathbf{b})^* \mathbf{aa} (\mathbf{a} \cup \mathbf{b})^*$$

bbabbb**a**abab

aaaa

bbbbbabbb**a**bbbbbb

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } \mathbf{aa} \text{ as a substring} \}$.

$$\Sigma^* \mathbf{aa} \Sigma^*$$

bbabbb**aabab**

aaaa

bbbbbabbbb**aabbbbb**

Designing Regular Expressions

Let $\Sigma = \{a, b\}$.

Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

The length of
a string w is
denoted $|w|$

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

$\Sigma \Sigma \Sigma \Sigma$

aaaa
babab
bbbb
baaa

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$.

Σ^4

aaaa
baba
bbbb
baaa

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

Here are some candidate regular expressions for the language L . Which of these are correct?

$\Sigma^* a \Sigma^*$
 $b^* a b^* \cup b^*$
 $b^* (a \cup \epsilon) b^*$
 $b^* a^* b^* \cup b^*$
 $b^* (a^* \cup \epsilon) b^*$

Answer at <https://cs103.stanford.edu/pollev>

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

$\mathbf{b}^* (\mathbf{a} \cup \epsilon) \mathbf{b}^*$

bbbb**a**bbb
bbbbbb
abbb
a

Designing Regular Expressions

- Let $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$.
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } \mathbf{a} \}$.

$\mathbf{b}^* \mathbf{a}^? \mathbf{b}^*$

$\mathbf{b} \mathbf{b} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b}$
 $\mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b}$
 $\mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b}$
 \mathbf{a}

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

a⁺ (.a⁺)^{*} @ a⁺ .a⁺ (.a⁺)^{*}

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

- Let $\Sigma = \{ \text{ a, ., @ } \}$, where **a** represents “some letter.”
- Let's make a regex for email addresses.

$$a^+ (.a^+)^* @ a^+ (.a^+)^*$$

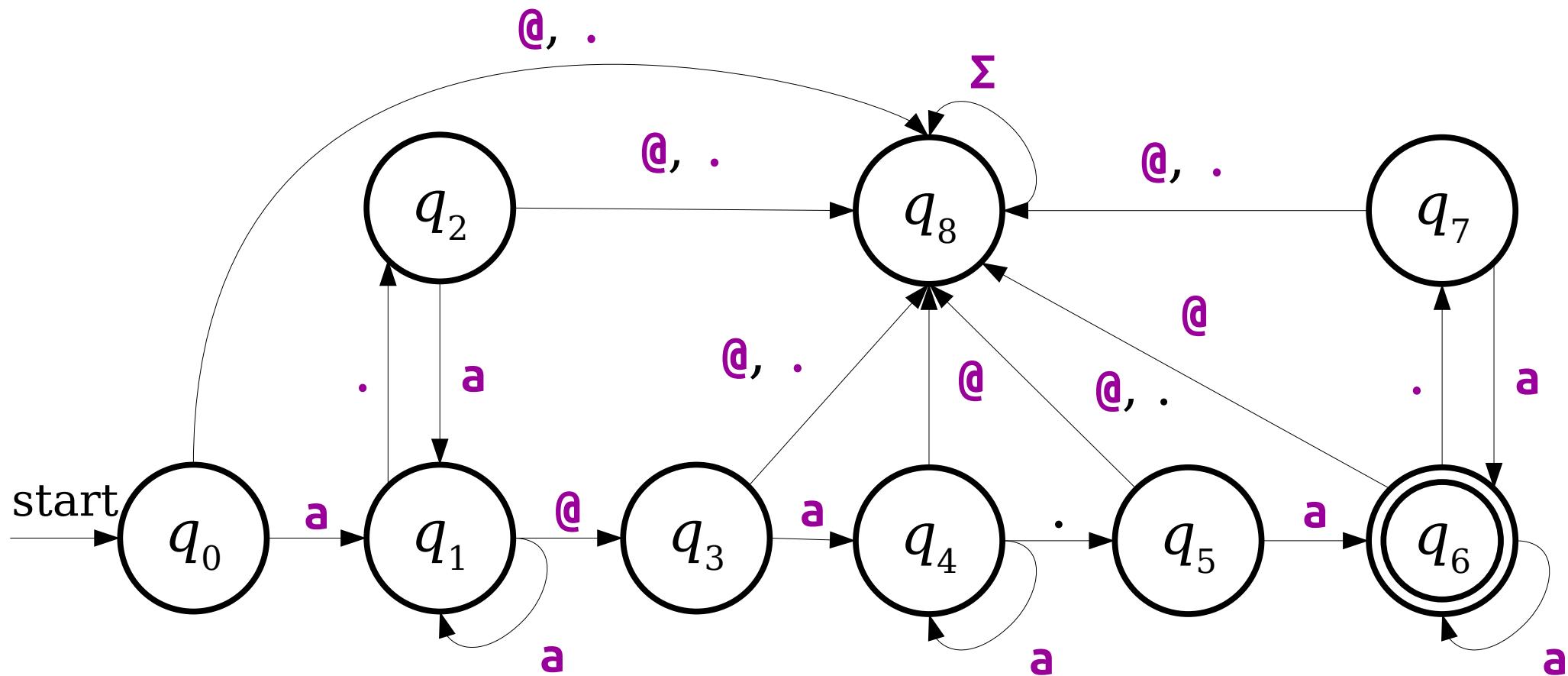
cs103@cs.stanford.edu

first.middle.last@mail.site.org

dot.at@dot.com

For Comparison

$$a^+ (\cdot a^+)^* @ a^+ (\cdot a^+)^+$$



Shorthand Summary

- R^n is shorthand for $RR \dots R$ (n times).
 - Edge case: define $R^0 = \epsilon$.
- Σ is shorthand for “any character in Σ .”
- $R?$ is shorthand for $(R \cup \epsilon)$, meaning “zero or one copies of R .”
- R^+ is shorthand for RR^* , meaning “one or more copies of R .”

The Lay of the Land

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Use induction!

- The atomic regular expressions all represent regular languages.
- The combination steps represent closure properties.
- So anything you can make from them must be regular!

Thompson's Algorithm

- In practice, many regex matchers use an algorithm called ***Thompson's algorithm*** to convert regular expressions into NFAs (and, from there, to DFAs).
 - Read Sipser if you're curious!
- ***Fun fact:*** the “Thompson” here is Ken Thompson, one of the co-inventors of Unix!

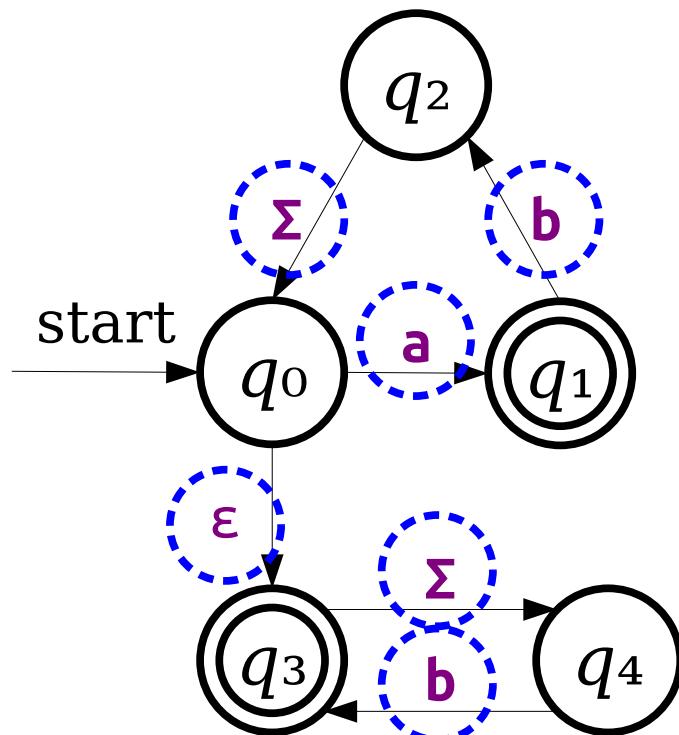
The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L .

This is not obvious!

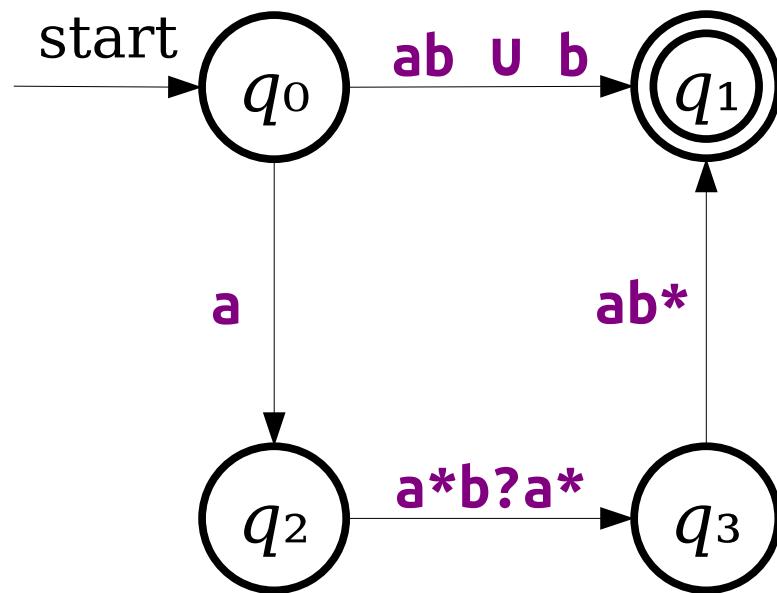
Proof idea: Show how to convert an arbitrary NFA into a regular expression.

Generalizing NFAs



These are all regular expressions!

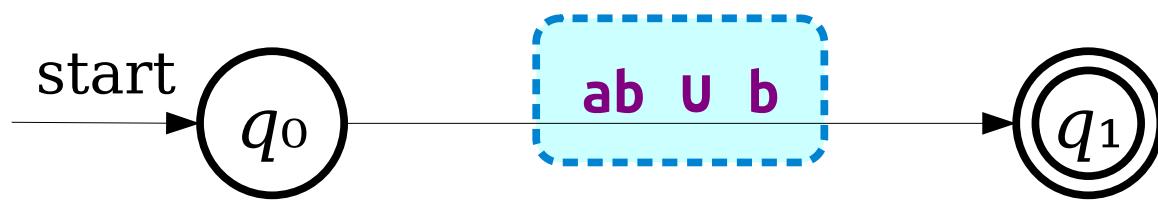
Generalizing NFAs



Note: Actual NFAs aren't allowed to have transitions like these. This is just a thought experiment.

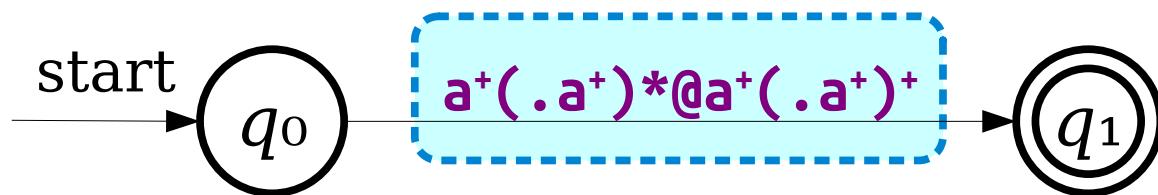
Key Idea 1: Imagine that we can label transitions in an NFA with arbitrary regular expressions.

Generalizing NFAs



Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

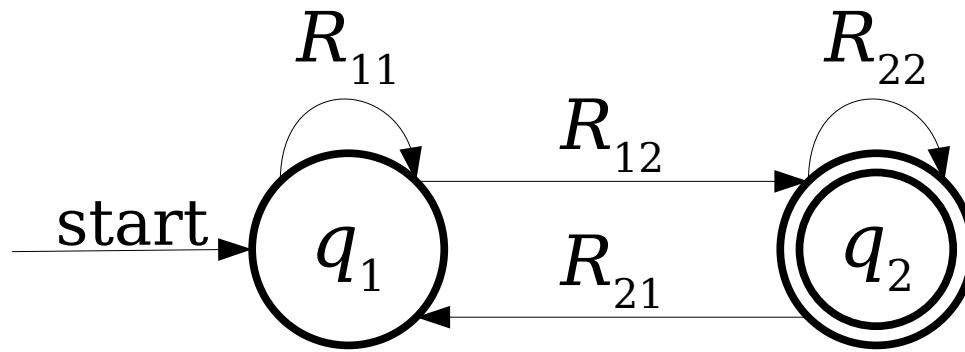


Is there a simple
regular expression for
the language of this
generalized NFA?

Key Idea 2: If we can convert an NFA into a generalized NFA that looks like this...

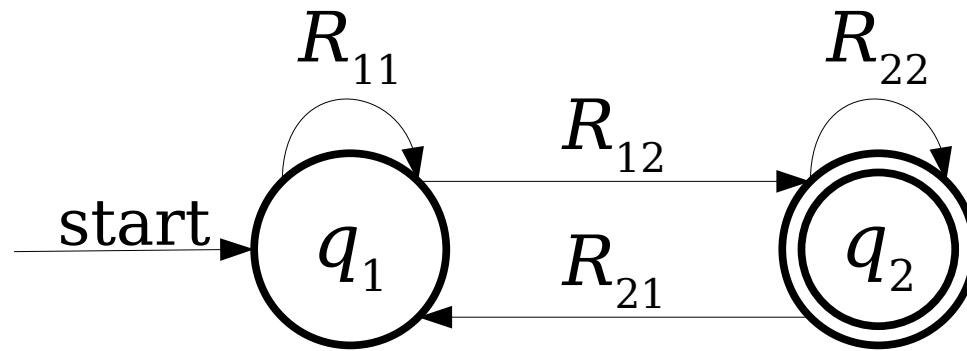
...then we can easily read off a regular expression for the original NFA.

From NFAs to Regular Expressions



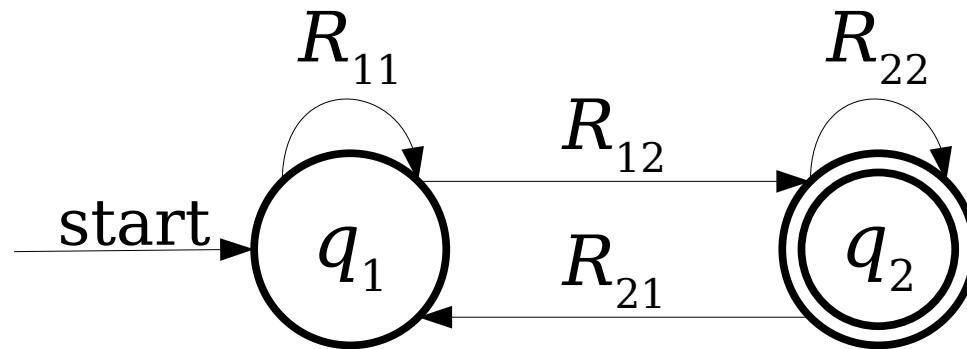
Here, R_{11} , R_{12} , R_{21} , and R_{22} are arbitrary regular expressions.

From NFAs to Regular Expressions



Question: Can we get a clean regular expression from this NFA?

From NFAs to Regular Expressions



Key Idea 3: Somehow transform this NFA so that it looks like this:

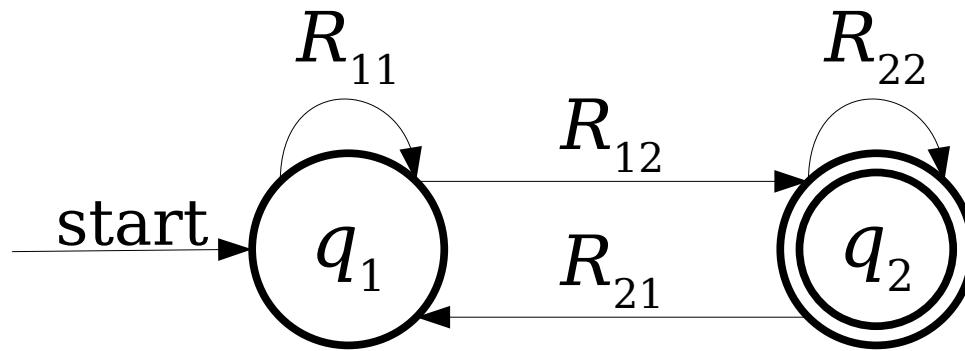
The State-Elimination Algorithm

- Start with an NFA N for the language L .
- Add a new start state q_s and accept state q_f to the NFA.
 - Add an ε -transition from q_s to the old start state of N .
 - Add ε -transitions from each accepting state of N to q_f , then mark them as not accepting.
- Repeatedly remove states other than q_s and q_f from the NFA by “shortcutting” them until only two states remain: q_s and q_f .
- The transition from q_s to q_f is then a regular expression for the NFA.

The State-Elimination Algorithm

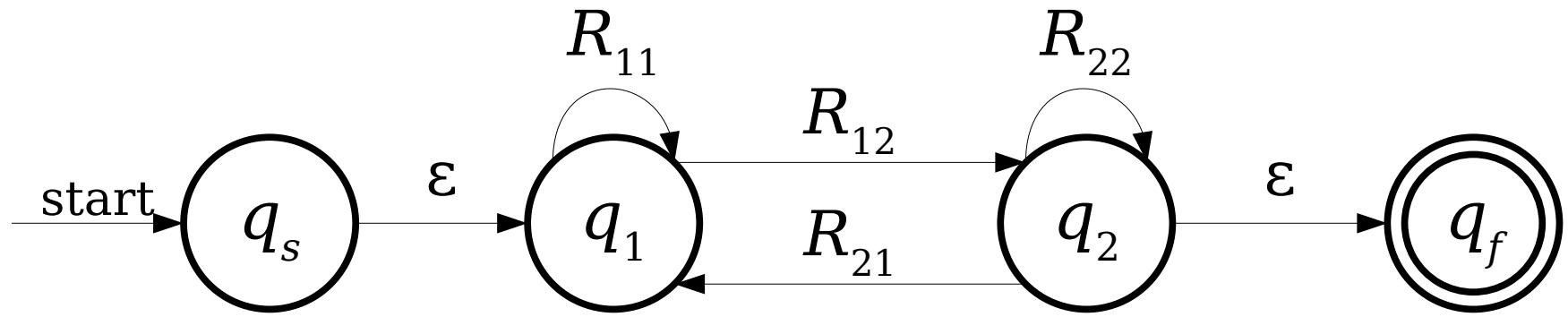
- To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1 , where there's a transition from q_0 into q and a transition from q into q_1 :
 - Let R_{in} be the regex on the transition from q_0 to q .
 - Let R_{out} be the regex on the transition from q to q_1 .
 - If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{stay})^*(R_{out})).$
 - If there isn't, add a new transition from q_0 to q_1 labeled $((R_{in})(R_{out}))$
- If a pair of states has multiple transitions between them labeled R_1, R_2, \dots, R_k , replace them with a single transition labeled $R_1 \cup R_2 \cup \dots \cup R_k$.

From NFAs to Regular Expressions

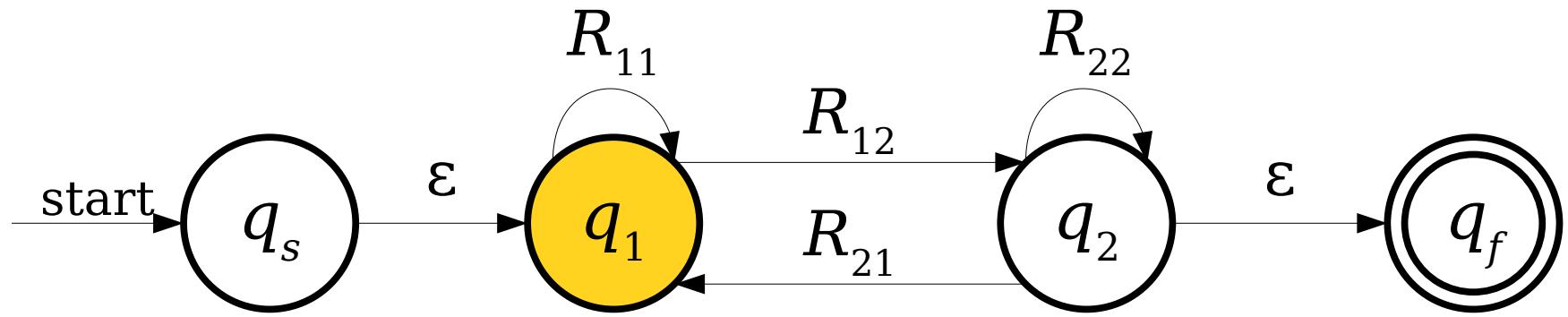


The first step is going to be a bit weird...

From NFAs to Regular Expressions

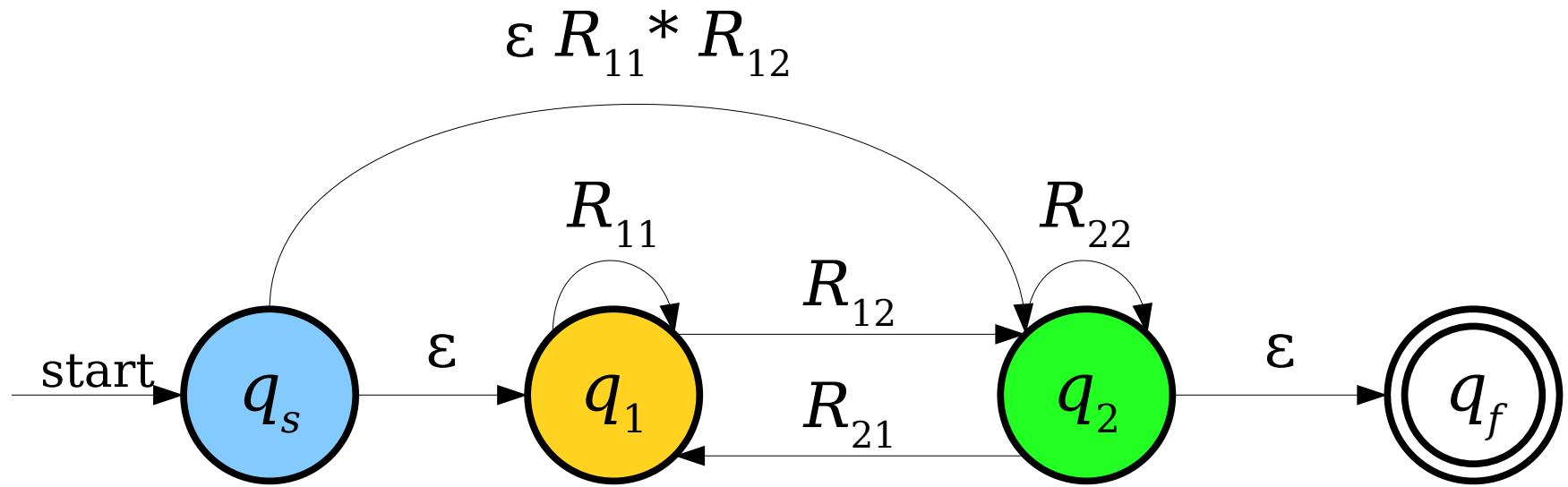


From NFAs to Regular Expressions



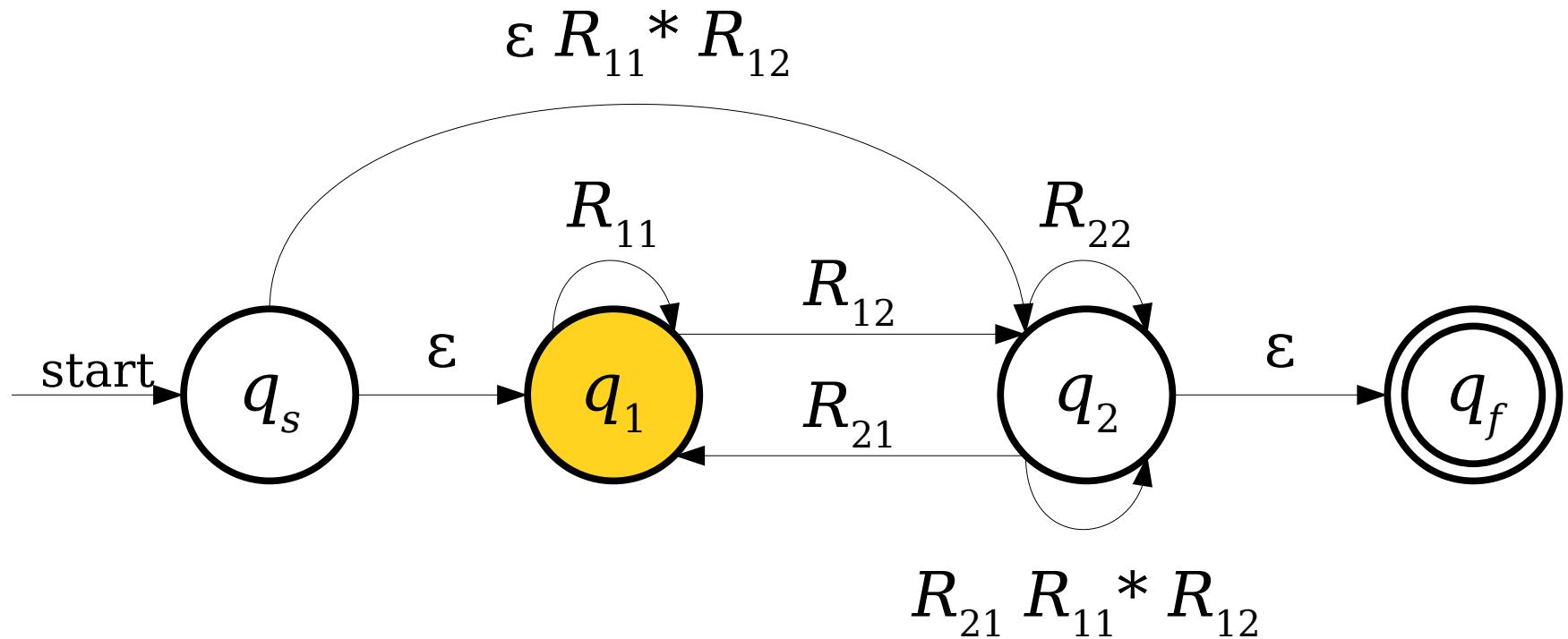
Could we eliminate
this state from
the NFA?

From NFAs to Regular Expressions

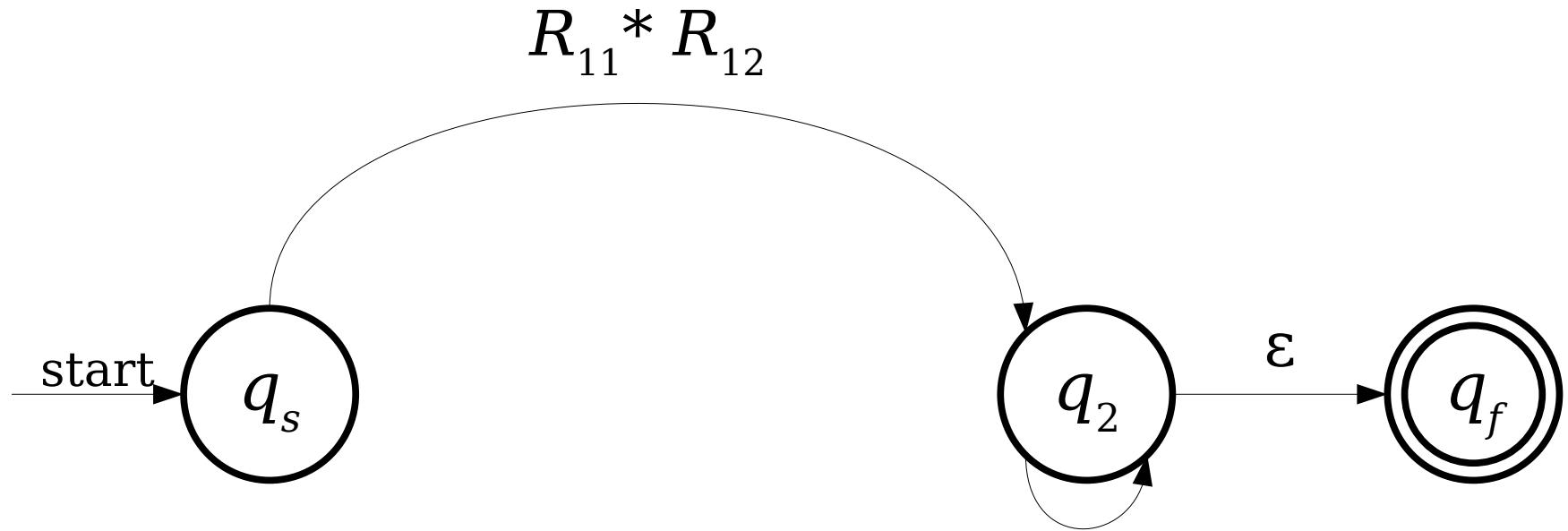


Note: We're using
concatenation and
Kleene closure in order
to skip this state.

From NFAs to Regular Expressions



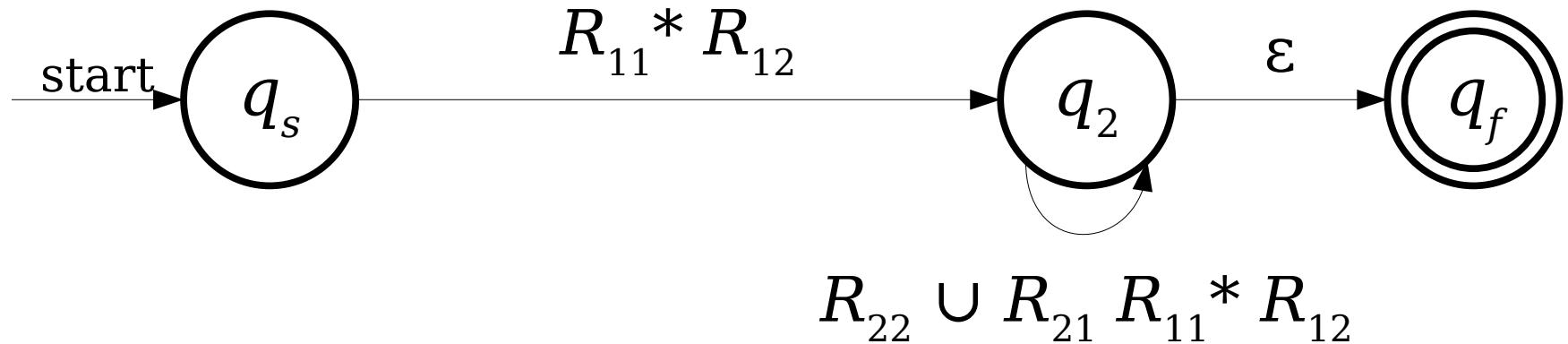
From NFAs to Regular Expressions



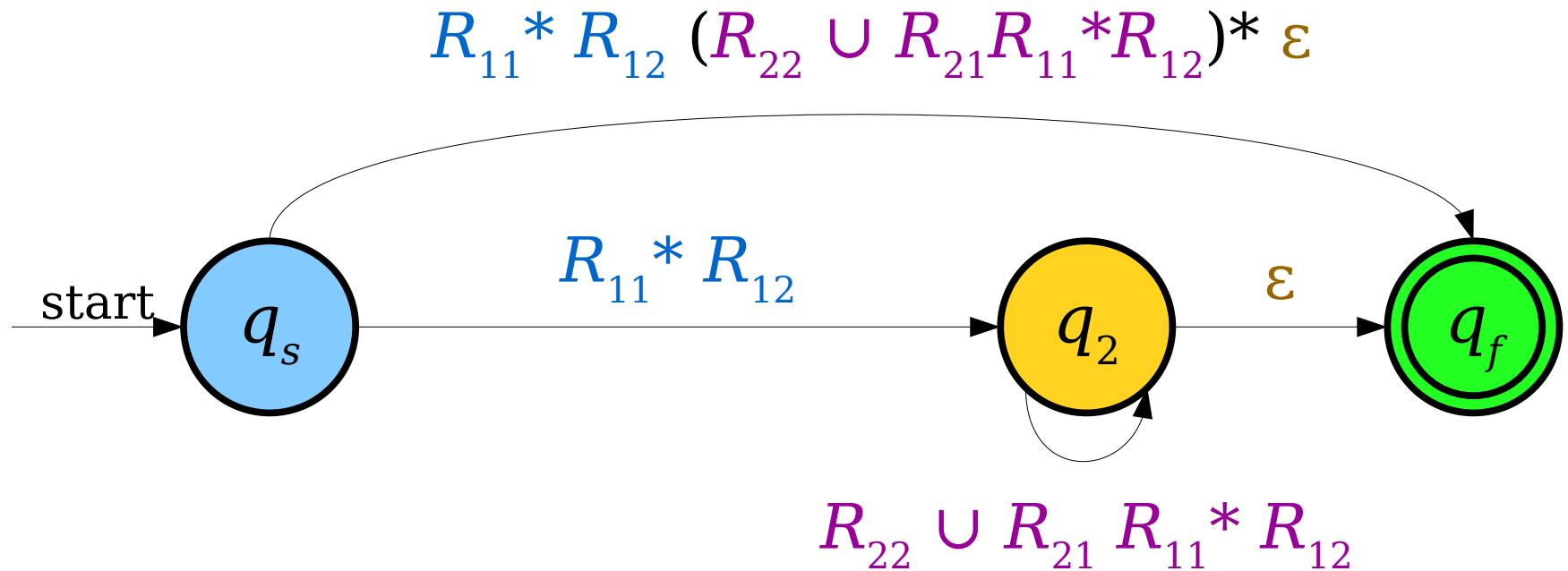
$$R_{22} \cup R_{21} R_{11} * R_{12}$$

Note: We're using **union** to combine these transitions together.

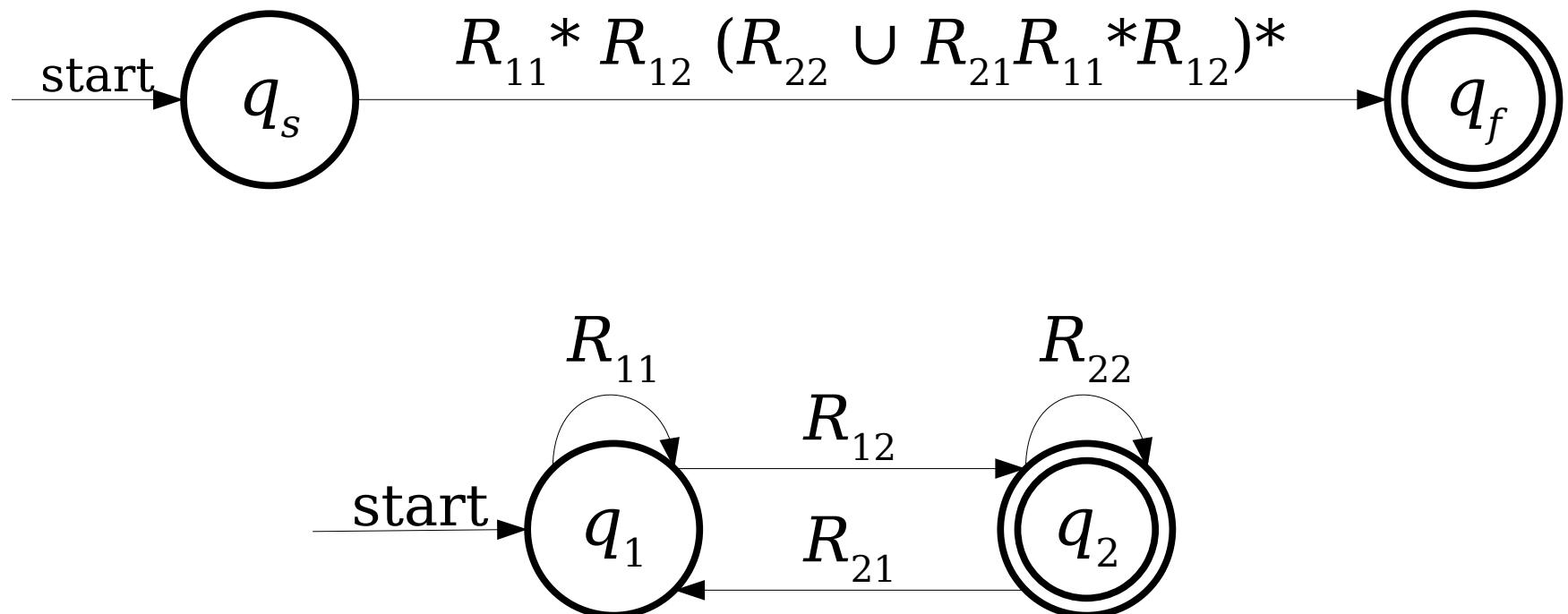
From NFAs to Regular Expressions



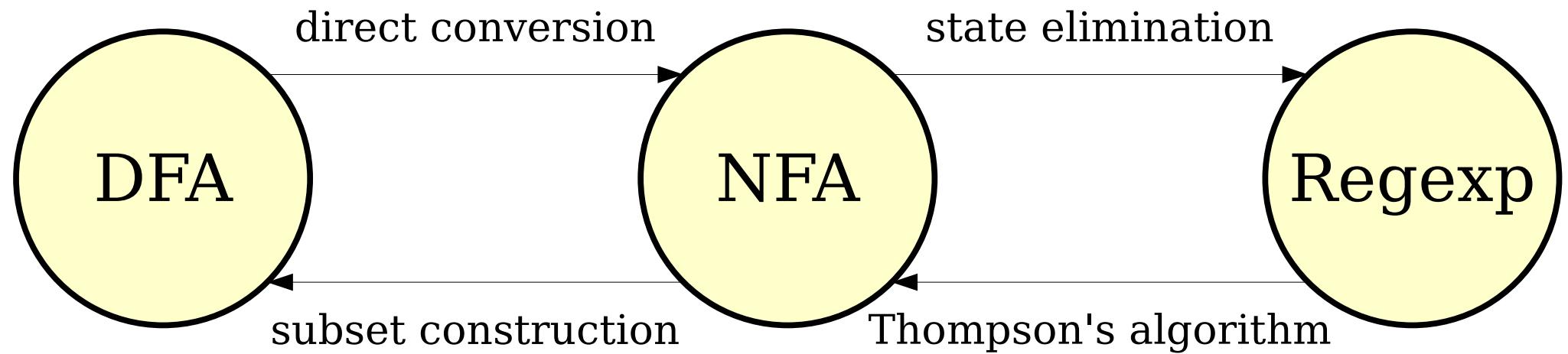
From NFAs to Regular Expressions



From NFAs to Regular Expressions



Our Transformations



Theorem: The following are all equivalent:

- L is a regular language.
- There is a DFA D such that $\mathcal{L}(D) = L$.
- There is an NFA N such that $\mathcal{L}(N) = L$.
- There is a regular expression R such that $\mathcal{L}(R) = L$.

Why This Matters

- The equivalence of regular expressions and finite automata has practical relevance.
 - Regular expression matchers have all the power available to them of DFAs and NFAs.
 - This also is hugely theoretically significant: the regular languages can be assembled “from scratch” using a small number of operations!

Your Action Items

- ***Read “Guide to Regexes”***
 - There's a lot of information and advice there about how to write regular expressions, plus a bunch of worked exercises.
- ***Read “Guide to State Elimination”***
 - It's a beautiful algorithm. The Guide goes into a lot more detail than what we did here.

Next Time

- *Intuiting Regular Languages*
 - What makes a language regular?
- *The Myhill-Nerode Theorem*
 - The limits of regular languages.