Lecture 17:
Regular Expressions

First, Some Announcements!

Second Midterm Logistics

* Our second midterm is next Monday, November 10",
from 7-10 PM. Locations vary, but mostly Hewlett
200.

» Topic coverage is primarily lectures 06 - 13 (functions
through induction) and PS3 - PS5. Finite automata and
onward won't be tested here.

 Because the material is cumulative, topics from PS1 - PS2
and Lectures 00 - 05 are also fair game.

« Seating assignments will be posted Wednesday
evening.

« Kenneth will host an exam review session this
Thursday, November 6%, 5-6 PM (room TBD; check Ed).

Preparing for the Exam

« The top skills that will serve you well on this exam:

Knowing how to set up a proof. This is a recurring theme
across functions, sets, graphs, pigeonhole, and induction.

Distinguishing between assuming and proving. This
similarly cuts across all of these topics.

Reading new definitions. This is at the heart of
mathematical reasoning.

Writing proofs in line with definitions. Folks often ask
about whether they’re being rigorous enough. Often
“rigorous enough” simply means “following what the
definitions say.”

* Our personal recommendation: when working through

practice problems, pay super extra close attention to
these areas.

Preparing for the Exam

« As with the first midterm exam, we’ve posted a bunch of
practice exams on the course website.

 There are ten practice exams (yes, really!). We realistically don’t
expect anyone to complete them all. They’re there to give you a
feeling of what the exam might look like.

« Some general notes on preparing:

« Q5 and Q6 on PS6, while technically on topics that aren’t covered
on the midterm, are great practice for the sorts of reasoning
you’ll need on the exam.

« Keep the TAs in the loop when studying. Ask for feedback on
any proofs you write when getting ready for the exam.

« Don’t skip on biological care and maintenance. Exams can be
stressful, but please make time for basic things like showering,
eating, etc. and for self-care in whatever form that takes for you.

* You can do this. Best of luck on the exam!

On to CS5103!

Recap from Last Time

Regular Languages

* A language L is called a regular language it
there is a DFA or an NFA for L.

« Theorem: The tollowing are equivalent:
« L is a regular language.
 There is a DFA D where ¥(D) = L.
« There is an NFA N where ¥(N) = L.

* In other words, knowing any one of the above
three facts means you know the other two.

Language Concatenation

e [fw € 2* and x € 2*, then wx is the
concatenation of w and x.

« If L1 and Lz are languages over X, the
concatenation of L1 and L: is the language
L1l.> defined as

Lilz = { x| 3w1 € Li. w2 € L2. X = wawz }

« Example: if L1 = { a, ba, bb } and L2 = { aa, bb },
then

L1l.> = { aaa, abb, baaa, babb, bbaa, bbbb }

[.ots and Lots of Concatenation

 Consider the language L = { aa, b }

« LI is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

 LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,

aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,
baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

e We can define what it means to
“exponentiate” a language as follows:

L° = {¢&} L+t = LLn
* So, for example, { aa, b }° is the language

{ aaaaaa, aaaab, aabaa, aabb,
baaaa, baab, bbaa, bbb}

The Kleene Closure

 An important operation on languages is
the Kleene Closure, which is defined as

L*={we€eX* | 3n € N.we L"}
« Mathematically:
welL* iff dne€e N.welL"

* Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

The Kleene Closure

IfL ={a, bb}, then L* = {
E,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as the set of strings you can
make it you have a collection of rubber
stfamps - one for each string in L - and
you tform every possible sfring that can be
made from those stamps.

Closure Properties

« Theorem: If L1 and L2 are regular
languages over an alphabet %, then so
are the following languages:

e [1 U L>
e [1lo
° L1>|<
 These (and other) properties are called

closure properties of the reqgular
languages.

New Stuff!

Another View of Regular Languages

Devices for Articulating Regular Languages

Finite Automata start -@

Set (or other Mathematical) Notation

{ we 2*| ws length is even }

State Transition Table 3 b

- New! Regular Expressions q, 4, 4,

 Set (or other Mathematical) Notation

{ we 2*| ws length is even }

Note: This one is not unigue to regular
langquages: We can express non—reqular
languages with set builder notation, as well,
More on that another day, when we explore
other families of languages.

Regular Expressions

* Regular expressions are a way of describing a
language via a string representation.

« They're used just about everywhere:

« They’'re built into the JavaScript language and used for
data validation.

 They're used in the UNIX grep and flex tools to search
files and build compilers.

 They’'re employed to clean and scrape data for large-
scale analysis projects.

« Conceptually, regular expressions are strings
describing how to assemble a larger language out
of smaller pieces.

Rethinking Regular Languages

 We currently have several tools for
showing a language L is regular:

e Construct a DFA for L.

e Construct an NFA for L.

 Combine several simpler regular languages
together via closure properties to form L.

 We have not spoken much of this last
idea.

Constructing Regular Languages

e Idea: Build up all regular languages as
follows:

« Start with a small set of simple languages we
already know to be regular.

« Using closure properties, combine these
simple languages together to form more
elaborate languages.

* This is a bottom-up approach to the
regular languages.

Atomic Regular Expressions

* The regular expressions begin with three
simple building blocks.

 The symbol O is a regular expression that
represents the empty language .

 For any a € %, the symbol a is a regular
expression for the language {a}.

 The symbol € is a regular expression that
represents the language {¢}.

 Remember: {c} # O!
 Remember: {€} # €!

Compound Regular Expressions

* If R1 and R: are regular expressions, RiR2 is
a regular expression for the concatenation ot
the languages of R: and Roa.

* If R1 and R:2 are regular expressions, R1 U R:
i1s a regular expression for the union of the
languages of R:1 and Ro.

* If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

* If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

 Here’s the operator precedence for
regular expressions:

(R)
R*
R1R>
R1 U R>
* SO ab*cUd is parsed as ((a(b*))c)ud

Regular Expression Examples

* The regular expression trickUtreat represents
the language

{ trick, treat }.

* The regular expression booo* represents the
regular language

{ boo, booo, boooo, ... }.

* The regular expression candy!(candy!)*
represents the regular language

{ candy!, candy!candy!, candy!candy!candy!, ... }.

Regular Expressions, Formally

 The language of a regular expression is the
language described by that regular expression.

 Formally:
» L(g) = {e}
c (D) =0
* F(a) = {a}
.+ $(R,R) = 4(R,) £(R,)
+ (R, UR,) = 2(R,) U 4(R))
o F(R*) = L(R)*
* Z((R)) = £(R)

Worthwhile activity: Apply
This recursive definition to

a(bUc)((d))

and see whal you gef,

Designing Regular Expressions

e Jet2 = {a, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

bbabbbaabab
aa
bbbbbabbbbaabbbbb

Designing Regular Expressions

e Jet2 = {a, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

2*aaz¥*

bbabbbaabab
aa
bbbbbabbbbaabbbbb

Designing Regular Expressions

jw| =4

The length ot
a string w is

denoted |w

Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}

222

o O O W
VU OO0 WL

Designing Regular Expressions

e Jet2 = {a, b}.
cletL={weX*||w| =41}

24

2daa
baba

bbbb
baaa

Designing Regular Expressions

e et X = {a, b}.

» Let L = { w € 2* | wcontains at most one a }.

Here are some candidate regular expressions for |
the language L. Which of these are correct?

2*a2*
b*ab* U b*
b*(a U &£)b*
b*a*b* U b*
b*(a* U €)b*

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Designing Regular Expressions

e et 2 ={a, b}.

« Let L = { w € 2* | w contains at most one a }.
b* b*

bbbbabbb
bbbbbb
bbb

Designing Regular Expressions

e et 2 ={a, b}.

« Let L = { w € 2* | w contains at most one a }.
b*a?b*

bbbbabbb
bbbbbb
bbb

A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.
a* (.a*)* @ a*.a* (.a")*
cs103@cs.stanford.edu

first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e et ={a, ., @}, where arepresents
“some letter.”

* Let's make a regex for email addresses.

a*(.a*)*@a*(.a")’

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

For Comparison

a*(.a*)*@a*(.a*)"

Shorthand Summary

R” is shorthand for RR ... R (n times).

 Edge case: define R® = ¢.
> is shorthand for “any character in X.”

R? is shorthand for (R U £), meaning
“zero or one copies of R.”

R* is shorthand for RR*, meaning “one or
more copies of R.”

The Lay of the Land

The Power of Regular Expressions

Theorem: If R is a regular expression,
then £(R) is regular.

Proof idea: Use induction!

 The atomic regular expressions all represent
regular languages.

 The combination steps represent closure
properties.

* So anything you can make from them must
be regular!

Thompson’s Algorithm

» In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAS).

 Read Sipser if you’'re curious!

 Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

The Power of Regular Expressions

Theorem: It L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

These are all regular
expressions!

Generalizing NFAs

start bub
)

ab*

a
@ a*b?a*

@

Note: Actual NFAs aren't
allowed To have fransitions
like these, This is just a
Thought experiment,

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular
expressions.

Generalizing NFAs

Is There a simple

reqular expression for
the language ot this
generalized NFA?

Generalizing NFAs

Is There a simple

reqular expression for
the language ot this
generalized NFA?

Key Idea 2: 1f we can convert an NFA into
a generalized NFA that looks like this...

start ! some-regex
qo) .. '

...then we can easily read off a regular
expression for the original NFA.

From NFAs to Regular Expressions

Rll R22
R12
start
Hevre, Ri1, Kz, Roi, and R are
arbitrary reqular expressions,

From NFAs to Regular Expressions

Rll R22
R12
start q, R21
QuesTion: Can we get a clean
reqular expression trom This NFA?

From NFAs to Regular Expressions

Rll R22
R12
start q, R21

Key Idea 3: Somehow transtorm
This NFA so that it looks like This:

U N NN NS NN SN D NN NN NN BN SN SN NN

start | some-regex :
do) ;

The State-Elimination Algorithm

» Start with an NFA N for the language L.

- Add a new start state q_ and accept state g, to the
NFA.

- Add an e-transition from q_to the old start state of N.

- Add e-transitions from each accepting state of N to g, then
mark them as not accepting.

- Repeatedly remove states other than g_and g, from

the NFA by “shortcutting” them until only two states
remain: q_and ¢..

 The transition from q_to q.is then a regular
expression for the NFA.

The State-Elimination Algorithm

 To eliminate a state g from the automaton, do the following
for each pair of states gqo and g1, where there's a transition
from qgo into g and a transition from g into gx:

- Let R, be the regex on the transition from qo to q.
- LetR_. Dbe the regex on the transition from q to qu.

- If there is a regular expression R, on a transition from g

to itself, add a new transition from qo to g: labeled
((Rin) (Rstay)*(Rout)) ’

o If there isn't, add a new transition from qo to g: labeled
(R,)(R,,))

« If a pair of states has multiple transitions between them
labeled R1, Rz, ..., Rk, replace them with a single transition
labeled R1 U R2 U ... U R«.

From NFAs to Regular Expressions

Rll R22
R12
start q, R21

The first sfep is going to be a
bit weird..

From NFAs to Regular Expressions

R R

11 22

. Ry i
star e q, R, \qy

From NFAs to Regular Expressions

R

11

.)
star G q1 R21 \qy ‘

Could we eliminate

this state trom
The NFA?

From NFAs to Regular Expressions

Note: We're using
concatenation and

Kleene closure in order
To skip this state,

From NFAs to Regular Expressions

From NFAs to Regular Expressions

Rll* R12

R22 U R21 R11>|< R12

Note: We're using union
To combine These
Transitions together,

From NFAs to Regular Expressions

star qs (> ‘

R, UR, R,

From NFAs to Regular Expressions

R, *R,, (R, UR, R *R)*¢

217 711

From NFAs to Regular Expressions

star qd Rll>|< R12 (R22 J 1:{211:{11*1:{12)>I<

R R

11 22

R12
start q, R21

Our Transftformations

direct conversion state elimination

DFA NFA Regexp

subset construction Thompson's algorithm

Theorem: The following are all equivalent:

- L. is a regular language.
- There is a DFA D such that (D) = L.

- There is an NFA N such that £(N) = L.
- There is a regular expression R such that £(R) = L.

Why This Matters

 The equivalence of regular expressions
and finite automata has practical
relevance.

 Regular expression matchers have all the
power available to them of DFAs and NFAs.

* This also is hugely theoretically
significant: the regular languages can be
assembled “from scratch” using a small
number of operations!

Your Action Items

* Read “Guide to Regexes”

e There’s a lot of information and advice there
about how to write regular expressions, plus
a bunch of worked exercises.

e Read “Guide to State Elimination”

* It’s a beautiful algorithm. The Guide goes
into a lot more detail than what we did here.

Next Time

* Intuiting Reqgular Languages

« What makes a language regular?
 The Myhill-Nerode Theorem

« The limits of regular languages.

